

University of Mumbai

Syllabus

FY B.Tech (First Year Semester I and II)

From Academic Year 2018-19 (KJSCE 2018 CBGS Pattern) Approved by Academic Board 07/ 04 /2018 FY B.Tech /All Branches / Revision 2.1

K. J. Somaiya College of Engineering, Vidyavihar, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Preamble

At the outset, I would like to congratulate you on your decision of becoming a part our journey of academic excellence. Academic Autonomy conferred by the University of Mumbai from the Academic Year 2014-15, gave us the freedom to develop and implement our own curriculum KJSCE2014 with features such as inclusion of choice based Interdisciplinary Course (IDC), Audit Courses, Add on Credit Courses, Exposure Courses, etc. Distinct assessment and evaluation methods were also designed based on focus of individual course. And the outcome of this entire exercises; either by way of student placements or the feedback received from all stakeholders is quite encouraging.

At present, Industry is moving towards Industrial revolution 4.0. Knowing very well that every country's education system forms the basis of its progress and the groundwork for its future, we need to be making engineering graduates equipped to take industrial challenges. A common feature in successful education systems is the balance between tradition and the capacity to be flexible and able to adapt to current social trends. To achieve this, AICTE has taken necessary initiative in January 2018 by introducing model syllabus for undergraduate courses having a focus on the changing industrial scenario.

Our new revision in syllabus *KJSCE2018*, to be introduced from the academic year 2018-19, has been designed based on the revised AICTE guidelines as well as various accrediting bodies.

The said syllabus is a result of expert advice from members of Board of studies and Academic Council; both having due representation from academia as well as appropriate industries. Subsequently faculty members of the college have put in efforts to document it in the form which has been presented here.

Some of the highlights of the *KJSCE2018* syllabus are: Introduction of wide choice for branch specific electives, more number of open or interdisciplinary electives, opportunity for internships, etc. Course like Environmental studies is taught in a project based learning approach; which would sensitize students about environmental concerns. A new course "Industrial applications" has been introduced at semester II which gives an overview of evolution in related areas, current trends, research and career opportunities, etc. Course on programming or Engineering Drawing pays more attention to hands-on learning.

Focus of academic processes in KJSCE is such that, by the time student completes the requirements of the degree, he/ she will be able to acquire attributes required for profession as an engineer. Outcomes are defined to acquire these attributes which lead to development of curriculum, pedagogy and assessment tools. These tools need to be updated based on experiences of teacher and learner. Hence teaching -learning -evaluation paradigm is going to be a mix of traditional as well as use of ICT tools. Role of the faculty member changes from tutor to trainer / instructor/ facilitator / mentor based on the outcomes targeted.

For measuring learning outcomes of students, traditional methods like tests, laboratory work and End Semester Examinations(ESE) are implemented. Continuous Assessment(CA) is carried out through two tests and internal assessment (IA) like quizzes, case studies, mini projects etc. These IA tools not only contribute to marks but also enables the student to learn through solutions discussed, improvisations suggested, feedbacks given by faculty members. Through these assessment methods students get opportunity for reading research papers, presenting ideas and working in a team. Since the assessments are distributed throughout the term the learning process is continuously monitored and graded.

College promotes co-curricular, extra-curricular activities as well as sports; making life outside classroom exciting and rewarding. What makes these activities very effective is the fact that these do not focus only on winning trophies but try to nurture generic skills such as leadership, effective communication, teamwork etc. which are essential skills for a bright professional career.

Along with my colleagues, I welcome you to Somaiya Vidyavihar and KJSCE and look forward to lead you towards professional career. Together, let us build a great future for ourselves and our country!

20/06/2018

Dr.Shubha Pandit Principal

Acron	ym for category of courses	Acrony	ms used in syllabus document
Acronym	Definition	Acronym	Definition
BS	Basic Science Courses	CA	Continuous Assessment
ES	Engineering Science	ESE	End Semester Exam
HS	Humanities and Social Sciences	IA	Internal Assessment
	including Management Courses		
PC	Professional Core Courses	0	Oral
PE	Professional Elective courses	Р	Practical
OE	Open Elective Courses	P&O	Practical and Oral
LC	Laboratory Courses	TH	Theory
PR	Project	TUT	Tutorial
AC	Audit Course	TW	Term work
AOCC	Add on Credit Course	T – 1	Test – 1
AOAC	Add on Audit Course	T – 2	Test – 2
AVAC	Add on Value Audit Course	CO	Course Outcome
EX	Exposure Course	PO	Program Outcome
Ι	Interdisciplinary courses	PSO	Program specific Outcome

Acronyms used in Course code e.g. 2UHC101

Acronym	Definition
Serially as per code	
2	Second revision after autonomy –"KJSCE 2018"
	(First revision KJSCE 2014)
U	Undergraduate
Т	Department of Science and Humanities
С	Core Course
L	Laboratory Course
W	Workshop
Т	Tutorial
Χ	Exposure Course
Α	Audit Course
1	FYBTech
01	Course No.

Group C

Computer Engineering (Division A & B) Information Technology (Division G & H) Mechanical Engineering (Division I)

Syllabus of Semester I and II

<u>Semester I</u> <u>Group C</u> <u>COMP (Division A & B), IT (Division G & H) and MECH (Division I)</u> <u>Credit Scheme</u>

Course Code	Course Name	Teaching Scheme (Hrs.)	Total (Hrs.)	Credits Assigned	Total Credits	Course Category
		TH - P - TUT		TH - P - TUT		
2UHC101	Applied Mathematics I	4 - 0 - 1	05	4 - 0 - 1	05	BS
2UHC103	Engineering Chemistry	4 - 0 - 0	04	4 - 0 - 0	04	BS
2UHC105	Engineering Drawing	1 - 0 - 2	03	1 - 0 - 2	03	ES
2UHC107	Elements of Electrical and Electronics Engineering	3-0-0	03	3 - 0 - 0	03	ES
2UHC109	Communication Skills	0 - 0 - 2	02	0 - 0 - 2	02	HS
2UHL103	Engineering Chemistry Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	BS
2UHL105	Engineering Drawing Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	ES
2UHL107	Elements of Electrical and Electronics Engineering Laboratory	0-2-0	02	0-1-0	01	ES
2UHW110	Workshop I	0 - 2 - 0	02	0 - 2 - 0	02	ES
Total		12 - 08 - 05	25	12 - 05 - 05	22	
2UHX1XX	Exposure Course	02				EX

Examination Scheme

Course	Course Name			E	kaminat	ion Scł	neme			
Code					Μ	arks				
		(CA		ESE	TW	0*	Р	P&O	Total
		T-1	T-2	IA						
2UHC101	Applied Mathematics I	20	20	10	50	25				125
2UHC103	Engineering Chemistry	20	20	10	50					100
2UHC105	Engineering Drawing	20	20	10	50					100
2UHC107	Elements of Electrical and Electronics Engineering	20	20	10	50					100
2UHC109	Communication Skills	25	25			50				100
2UHL103	Engineering Chemistry Laboratory					25	25			50
2UHL105	Engineering Drawing Laboratory					50				50
2UHL107	Elements of Electrical & Electronics Engineering Laboratory					25	25			50
2UHW110	Workshop I					50				50
2UHX1XX	Exposure course									-
	Total	105	105	40	200	225	50			725

* Oral based on Laboratory work

Semester II

<u>Group C</u> <u>COMP (Division A & B), IT (Division G & H) and MECH (Division I)</u> <u>Credit Scheme</u>

Course Code	Course Name	Teaching Scheme (Hrs.) TH – P – TUT	Total (Hrs.)	Credits Assigned TH – P – TUT	Total Credits	Course Category
2UHC111	Applied Mathematics II	4 - 0 - 1	05	4 - 0 - 1	05	BS
2UHC102	Engineering Physics	4 - 0 - 0	04	4 - 0 - 0	04	BS
2UHC104	Engineering Mechanics	3 - 0 - 0	03	3 - 0 - 0	03	ES
2UHC106	Programming in C	1 - 0 - 2	03	1 - 0 - 2	03	ES
2UHC108	Environmental Studies	0 - 0 - 2	02	0 - 0 - 2	02	HS
2UHC112	Industrial Applications [#]	$0 - 0 - 2^{\$}$	02	0 - 0 - 2	02	ES
2UHL102	Engineering Physics Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	BS
2UHL104	Engineering Mechanics Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	ES
2UHL106	Programming in C Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	ES
2UHW113	Workshop II	0 - 2 - 0	02	0 - 2 - 0	02	ES
	Total	12-08-07	27	12 - 05 - 07	24	
2UHX1XX	Exposure Course	02				EX

^{\$}Class-wise tutorials [#]Branch wise Course

Examination Scheme

Course	Course Name]	Examin	ation S	chem	e			
Code					1	Marks					
			CA		ESE	TW	0*	Р	P&O	Total	
		T-1	T-2	IA							
2UHC111	Applied Mathematics II	20	20	10	50	25				125	
2UHC102	Engineering Physics	20	20	10	50					100	
2UHC104	Engineering Mechanics	20	20	10	50					100	
2UHC106	Programming in C	20	20	10	50					100	
2UHC108	Environmental Studies	25	25			50				100	
2UHC112	Industrial Applications					50				50	
2UHL102	Engineering Physics Laboratory					25	25			50	
2UHL104	Engineering Mechanics Laboratory					25	25			50	
2UHL106	Programming in C Laboratory					50				50	
2UHW113	Workshop II					50				50	
2UHX1XX	Exposure Course									-	
	Total	105	105	40	200	275	50			775	

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Group P

Electronics Engineering (Division C & D) Electronics and Telecommunication Engineering (Division E & F) Mechanical Engineering (Division J)

Syllabus of semester I and II

<u>Semester I</u> <u>Group P</u> <u>ETRX (Division C & D), EXTC (Division E & F) and MECH (Division J)</u>

Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.)	Total (Hrs.)	Credits Assigned	Total Credits	Course Category
		TH – P – TUŤ		TH – P – TUT		0 1
2UHC101	Applied Mathematics I	4 - 0 - 1	05	4 - 0 - 1	05	BS
2UHC102	Engineering Physics	4 - 0 - 0	04	4 - 0 - 0	04	BS
2UHC104	Engineering Mechanics	3 - 0 - 0	03	3 - 0 - 0	03	ES
2UHC106	Programming in C	1 - 0 - 2	03	1 - 0 - 2	03	ES
2UHC108	Environmental Studies	0 - 0 - 2	02	0 - 0 - 2	02	HS
2UHL102	Engineering Physics Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	BS
2UHL104	Engineering Mechanics Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	ES
2UHL106	Programming in C Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	ES
2UHW110	Workshop I	0 - 2 - 0	02	0 - 2 - 0	02	ES
	Total	12 - 08 - 05	25	12 - 05 - 05	22	
2UHX1XX	Exposure Course	02				EX

Examination Scheme

Course	Course Name			F	Examina	tion Sc	heme			
Code					N	Aarks				
			CA		ESE	TW	0*	Р	P&O	Total
		T-1	T-2	IA						
2UHC101	Applied Mathematics I	20	20	10	50	25				125
2UHC102	Engineering Physics	20	20	10	50					100
2UHC104	Engineering Mechanics	20	20	10	50					100
1UHC106	Programming in C	20	20	10	50					100
2UHC108	Environmental Studies	25	25			50				100
2UHL102	Engineering Physics					25	25			50
	Laboratory					25	25			50
2UHL104	Engineering Mechanics					25	25			50
	Laboratory					25	25			50
2UHL106	Programming in C					50				50
	Laboratory					50				50
2UHW110	Workshop II					50				50
2UHX1XX	Exposure course									-
	Total	105	105	40	200	225	50			725

<u>Semester II</u> <u>Group P</u> <u>ETRX (Division C & D), EXTC (Division E & F) and MECH (Division J)</u> <u>Credit Scheme</u>

Course	Course Name	Teaching	Total	Credits	Total	Course
Code		Scheme (Hrs.) $TH - P - TUT$	(Hrs.)	Assigned TH – P – TUT	credits	Category
2UHC111	Applied Mathematics II	4 - 0 - 1	05	4 - 0 - 1	05	BS
2UHC103	Engineering Chemistry	4 - 0 - 0	04	4 - 0 - 0	04	BS
2UHC105	Engineering Drawing	1 - 0 - 2	03	1 - 0 - 2	03	ES
2UHC107	Elements of Electrical	3 - 0 - 0	03	3 - 0 - 0	03	ES
	and Electronics					
	Engineering					
2UHC109	Communication Skills	0 - 0 - 2	02	0 - 0 - 2	02	HS
2UHC112	Industrial Applications [#]	$0 - 0 - 2^{\$}$	02	0 - 0 - 2	02	ES
2UHL103	Engineering Chemistry	0 - 2 - 0	02	0 - 1 - 0	01	BS
	Laboratory					
2UHL105	Engineering Drawing	0 - 2 - 0	02	0 - 1 - 0	01	ES
	Laboratory					
2UHL107	Elements of Electrical	0 - 2 - 0	02	0 - 1 - 0	01	ES
	and Electronics					
	Engineering Laboratory					
2UHW113	Workshop II	0 - 2 - 0	02	0 - 2 - 0	02	ES
Total		12-08-07	27	12 - 05 - 07	24	
2UHX1XX	Exposure Course	02				EX

^{\$}Class-wise tutorials [#]Branch wise Course

Examination Scheme

Course	Course Name			E	xamina	tion Se	cheme)		
Code					N	Aarks				
			CA		ESE	TW	0^{*}	Р	P&O	Total
		T-1	T-2	IA						
2UHC111	Applied Mathematics II	20	20	10	50	25				125
2UHC103	Engineering Chemistry	20	20	10	50					100
2UHC105	Engineering Drawing	20	20	10	50					100
2UHC107	Elements of Electrical and Electronics Engineering	20	20	10	50					100
2UHC109	Communication Skills	25	25			50	-			100
2UHC112	Industrial Applications					50	-			50
2UHL103	Engineering Chemistry Laboratory					25	25			50
2UHL105	Engineering Drawing Laboratory					50				50
2UHL107	Elements of Electrical & Electronics Engineering Laboratory					25	25			50
2UHW110	Workshop I					50				50
2UHX1XX	Exposure course									
	Total	105	105	40	200	275	50			775

* Oral based on Laboratory work

Course Code		Course Title										
2UHC101		Applied Mathematics - I										
]	Γ H		P)	r	ГИТ	Total			
Teaching Scheme(Hrs.)		(04				01*		05			
Credits Assigned		(04			-		01	05			
					Marks							
Examination	СА			ECE		0	р	DEO	Total			
Scheme	T-1	T-2	IA	ESE	IW	U	P	rau	TOTAL			
	20	20	10	50	25				125			

* Batch wise Tutorial

Course prerequisites

- Differentiation Methods
- Basics of Complex numbers
- Basics of Matrices, Inverse and Adjoint

Course Objectives

The objective of the course is to impart knowledge of De- Moivre's theorem, hyperbolic functions and logarithm of complex numbers. The course clarifies the concept of partial differentiation and its applications. The concept of rank of matrix, solving system of linear equations, Eigen values and Eigen vectors is also conveyed.

Course Outcomes

- CO1. Solve problems involving different forms and properties of complex numbers, hyperbolic functions and logarithm of complex numbers.
- CO2. Apply the concept of rank of a matrix and numerical methods to solve system of linear equations.
- CO3. Find Eigen values, Eigen vectors of a matrix, apply Cayley Hamilton theorem, diagonalise a matrix and find functions of square matrices.
- CO4. Find partial derivatives of multivariable functions, apply the concept of partial differentiation to find maxima and minima of multivariable functions (2-3 variables) apply Euler's theorem to prove results about Homogeneous functions.

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Comp	lex Numbers	7	CO 1
	1.1	Statement of De Moivre's theorem and related examples		
	1.2	Expansion of $sin^n \theta$, $cos^n \theta$ in terms of sine and cosine		
		of multiples of angle θ and expansion of <i>sinn</i> θ , <i>cosn</i> θ in		
		powers of sin θ , cos θ		
	1.3	Powers and roots of complex numbers		
2	Нуре	rbolic Functions and Logarithm of Complex Number	6	CO 1
	2.1	Circular functions of complex number and hyperbolic		
		functions		
	2.2	Inverse circular and inverse hyperbolic functions		
	2.3	Logarithmic functions		
	2.4	Separation of real and imaginary parts		
3	Matri	x Theory: Rank of Matrix	12	CO 2
	3.1	Types and properties of matrices: Symmetric, Skew-		
		symmetric, Hermitian, Skew hermitian, Unitary and		
		Orthogonal matrix		
	3.2	Rank of a matrix using row echelon forms, reduction to		
		normal form, and PAQ form		
	3.3	System of homogeneous and non-homogeneous		
		equations, their consistency and solutions		
	3.4	Linearly dependent and independent vectors		
	3.5	Solution of system of linear algebraic equations by		
		(a) Crout's method (LU) (b) Gauss Seidal method (c)		
		Jacobi iteration method		
		#Self learning topic: Properties of adjoint and inverse of		
		a matrix		
4	Matri	x Theory: Eigen values & Eigen vectors	12	CO 3
	4.1	Characteristic equation, Eigen values and Eigen vectors,		
		Properties of eigen values and eigen vectors		
	4.2	Statement of Cayley-Hamilton theorem, Examples based		
		on verification and application of Cayley-Hamilton		
		theorem		
	4.3	Similarity of matrices, Diagonalisation of a matrix		
	4.4	Functions of square matrix, Derogatory and non-		
		derogatory matrices, Minimal polynomial		
5	Partia	l Differentiation and Application	10	CO4
	5.1	Functions of several variables, Partial derivatives of first		
		and higher order (definition using limits and simple		
		problems)		
	5.2	Differentiation of composite and implicit functions, Total		
		differentials		
	5.3	Maxima and minima of a function of two independent		
		variables		
	5.4	Lagrange's method of undetermined multipliers with one		
		constraint		

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

	5.5	Introduction of Jacobian of two and three independent variables (simple problems)		
6	Home	ogeneous Functions	5	CO4
	6.1	Euler's theorem on homogeneous functions with two and		
		three independent variables (with proof) and problems		
	6.2	Deductions(Corollaries) from Euler's theorem (with		
		proof) and problems		
		Total	52	

Recommended Books

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	B. S. Grewal	Higher Engineering	Khanna	43 rd Edition
		Mathematics	Publications,	2014
			India	
2.	Erwin Kreyszig	Advanced Engineering	Wiley Eastern	10 th Edition
		Mathematics	Limited, India	2015
3.	Shanti Narayan	A text book of Matrices	S. Chand,	10 th Edition
			India	2004
4.	P. N. Wartikar and	A text book of Applied	Pune Vidyarthi	6 th Edition
	J. N. Wartikar	Mathematics Vol I & II	Gruha, India	2012

Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA.

Term-Work will consist of Tutorials covering entire syllabus. Students will be graded based on continuous assessment of their term work

Course Code		Course Title								
2UHC102		Engineering Physics								
]	Γ H		P		,	ГИТ	Total	
Teaching Scheme(Hrs.)	04								04	
Credits Assigned	04					-			04	
		Marks								
Examination	СА		ESE	TW			D&O	Total		
Scheme	T-1	T-2	IA	ESE	1 VV	U	r	140	Totai	
	20	20	10	50					100	

Course Prerequisites

The Following topics of higher Secondary Level Physics are required as Prerequisites of this course

- Semiconductors
- Optics
- Electrodynamics

Course Objectives:

The objective of this course is to impart fundamental concepts, their application and processes. This course enhances creative thinking of the students which leads them to explore engineering applications for technological development.

Course Outcomes:

- **CO1**. Apply the knowledge of Solid State Physics to different crystal structures and semiconductor materials.
- **CO2**. Distinguish engineering materials on the basis of their behavior such as Dielectric, Magnetic and Superconducting properties.
- **CO3**. Apply knowledge of quantum opto-electronics and sensors in futuristic development of science and technology.
- **CO4**. Demonstrate the concepts of interference, diffraction and polarization using real life applications.
- **CO5**. Discuss the behavior of electromagnetic waves using fundamentals of Electrodynamics.

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Module	Unit	Details	Hrs.	CO			
No.	No.			601			
1	Solid	State Physics	11	CO1			
	1.1	Crystallography: Diamond cubic and Hexagonal Closed					
		Packed (HCP) structures, Planes and directions, Miller					
	1.0	Indices.					
	1.2 A-Kay diffraction, Crystal structure determination by						
	1.2						
	1.3	Liquid Crystals: Types, phases, properties and applications.					
	1.4	Semiconductors: Fermi Dirac distribution function, Fermi					
		energy in conductors and its temperature dependence, Fermi					
		level in semiconductors, Effect of concentration and					
		temperature dependence on the Fermi level of extrinsic					
		semiconductors.					
	1.5	Concepts of effective mass and hole, Density of states,					
		Drift, Diffusion and Continuity equation, p-n junction at					
		equilibrium, Derivation of barrier potential, Hall effect.					
2	Dielec	ctrics, Magnetic and Superconducting Properties of	9	CO2			
	Mater	rials					
	2.1	Dielectrics: Relation between basic dielectric parameters					
		(E, D, P, ε_r , χ and allied terms), Types of polarization,					
		derivations of various polarizabilities, Frequency					
		dependence of polarizability, Ferro-electricity and pyro-					
		electricity.	-				
	2.2	Magnetic Properties: Diamagnetism, Paramagnetism and					
		meterials Earritas and its applications					
	22	Superconductivity: Superconducting materials and its					
	2.3	superconductivity: Superconducting materials and its					
		of aritical magnetic field. Maissner affect					
	2.4	Type I and II superconductors Their application in					
	2.7	superconducting magnets and Magley					
3	Ouan	tum and Onto-electronics	9	CO3			
•	31	Quantum mechanics: De-Broglie's hypothesis Matter	-	000			
	5.1	waves Wave packet Phase velocity Group velocity and					
		their relation Uncertainty principle and its applications					
	3.2	Wave function Time dependent and time independent					
		Schrodinger's equation, Free particle, Particle in box, 3-					
		Dimensional potential well, Tunneling effect.					
	3.3	LASERs: Population, Absorption, Spontaneous and					
		Stimulated emission, Pumping, Metastable state, Optical					
		resonator, Einstein's coefficient, He-Ne and Nd:YAG					
		Laser, Applications of Lasers, Holography.					
	3.4	Optical Fibres: Total internal reflection, Classification of					
		fibres, Numerical aperture, Modes of propagation, V-					
		number, Block diagram of basic optical fibre					
		communication system, Attenuation, Dispersion,					

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

		Optical windows, Bit-rate, Commercially used fibres.		
4	Senso	rs and Transducers	6	CO3
•	4.1	Sensors and Transducers:Sensors and Transducers:Effects used in sensorstechnology:Piezoelectric,Magnetoresistance effect,Seebeck effect,Peltier effect(Qualitative and Quantitative discussions).Biological Sensors:Environmental sensing by plants,Different types of Tropism,Environmental sensing byanimals eg.Shark etc.MEMS,NEMS:Principle,Types of designing tools.IR/UV SensorsGas sensors		
5		Optics	11	CO4
	5.1 5.2 5.3	Interference: Interference by division of amplitude, Interference in thin films of uniform thickness, Non- uniform thin film: Wedge shaped film and Newton's rings, Antireflection films, Anti-transmitting films, Testing of optical flatness. Diffraction: Fraunhoffer's diffraction, Resultant amplitude due to large number of waves, Diffraction due to single slit, double slits, Absent spectra. Diffraction due to multiple slits: diffraction grating, grating equation, Rayleigh's criterion and resolving power of grating.		
	5.4	Polarization: Production of plane polarized light, Birefringence, Nicol's prism, Polarizer-analyzer, Malus's law, Elliptically and circularly polarized light, Application in photoelasticity.		
6	Electr	odynamics	6	CO5
	6.1 6.2 6.3	 Vector Calculus: Scalar fields & vector fields, Gradients, Divergence, Curl and their physical significance, Fundamental laws of gradient, Divergence and curl. Electric field due to continuous charge distribution, Electric potential. Magnetostatics: Source and properties of magnetic field, Laws of magnetostatics, Faraday's law of electromagnetic induction. Maxwell's equation, Electromagnetic wave equation. 		
		Total	52	

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with Country	Edition with Year of Publication
1.	Kittle Charles	Introduction to Solid State Physics	Wiley, India	8 th Edition, 2012
2.	Murthy D.V.S.	Transducers and Instrumentation	PHI, India	2 nd Edition, 2013
3.	Bransden B. H. and Joachain C. J.	Quantum Mechanics	Pearson, UK	2 nd Edition, 2011
4.	Kshirsagar M. N. and Avadhanulu P. G.	A Textbook of Engineering Physics	S. Chand, India	10 nd Edition, 2014
5.	Ghatak Ajoy and Thyagarajan K	Fibre Optics and Lasers	McMillan, India	1 st Edition, 2016

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Course Code	Course Title									
2UHC103		Engineering Chemistry								
]	Г Н		P	1	r	ГИТ	Total	
Teaching Scheme(Hrs.)	04								04	
Credits Assigned			04						04	
		Marks								
Examination	СА		ESE		0	D	D&O	Tatal		
Scheme	T-1	T-2	IA	ESE	IW	U	r	140	Total	
	20	20	10	50					100	

Course prerequisites

The following topics of higher secondary level Chemistry are required as prerequisites of this course

- Stoichiometry
- Organic Chemistry
- Inorganic Chemistry

Course Objective:

The objective of this course is to appreciate the basic concepts of Chemistry towards the development of futuristic materials and their applications in engineering. The course helps to understand chemical processes involved in development of sustainable energy sources and development of Nanomaterial and Nanotechnology in engineering. The course also inculcates the knowledge about water technology and green chemistry in day to day life.

Course Outcomes

- **CO1.** Understand the methods to produce soft and portable water and use of green chemistry principles in real life applications.
- **CO2.** Distinguish between the various types of fuels and materials for construction of batteries in sustainable energy production.
- CO3. Discuss the use of polymeric and nanomaterial for futuristic engineering applications.
- **CO4.** Apply basic concepts of Spectroscopy and Electro-analytical technique in characterizing chemical compounds.
- **CO5.** Explain synthetic organic chemistry for justifying mechanism of chemical reactions and the role of inorganic elements in living organisms.

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Water	and Green Chemistry	11	CO1
	1.1	Introduction, Types of hardness, Equivalence of CaCO ₃ ,		
		Experimental determination of hardness		
	1.2	Softening of hard water, Lime soda method with reaction,		
		Zeolite or Permutit process, problems on Zeolite, Ion-		
	1.3	Methods to determine extent of water pollution, BOD,		
		COD.		
		Desalination of water using Electro dialysis, Reverse		
	1 /	Osiliosis Green chemistry: Introduction Goals 12 principles of		
	1.4	green chemistry Significance of 12 principles with		
		industrial examples		
2	Energy		10	CO^{2}
-	2 1	Panawahla source of anargy Introduction Classification	10	02
	2.1	Solar energy Production of electricity using solar energy		
		Photo voltaic cells		
	2.2	Non-renewable source of energy - Fuels Definition		
		characteristic of good fuel. Calorific value of fuel. Solid		
		fuel. Analysis of coal and its significance. Liquid fuel.		
		Refining of petroleum, Cracking, Characteristic of fuel for		
		internal combustion engine, Knocking, Anti-knocking		
		agents, Octane number, Cetane number, Unleaded petrol		
	2.3	Battery technology- Basic concepts, Battery		
		characteristics, Classification, Classical batteries and		
		Modern batteries		
3	Polyme	er Chemistry	9	CO3
	3.1	Introduction, Classifications, Characteristic properties,		
		Concept of molecular mass, Determination of molecular		
		mass		
	3.2	Methods of polymerization, Compounding and fabrication		
	2.2	OI plastics		
	3.3	(DVA) Polyvinyl alashal Polymethyl methagylate		
		(PMMA) Poly acrylamide Polycarbonate Conducting		
		nolymer Liquid crystal nolymer		
4	Nano s	cience and Nanotechnology	1	CO3
-	4 1	Introduction Droportion Synthesis and amplications of	4	0.05
	4.1	Nonomatorials		
	12	Carbon Clusters, Granhene Fullerene Carbon nanotubes		
	7.4	Structure Quantum dots Properties and applications of		
		CNTs		

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

5	Spectr	oscopy and Instrumental Methods of Analysis	10	CO4
	5.1	UV spectroscopy, Principle, Instrumentation and applications		
	5.2	IR spectroscopy - Basic Principle, Instrumentation and applications		
	5.3	¹ H NMR spectroscopy: Principle, Instrumentation, Chemical shift, Factors affecting chemical shift, Applications		
	5.4	Electroanalytical techniques, pH metry, Conductometry		
6	Synthe	tic Organic Reactions and Bio-inorganic Chemistry	8	CO5
	6.1	Name reactions: 1) Aldol condensation, 2) Baeyer –Villiger oxidation, 3) Dakin Reaction, 4) Haloform reaction, 5) Sharpless epoxidation, 6) Wurtz synthesis, 7) Benzilic acid rearrangement, 8) Benzoin condensation, 9) Birch reduction, 10) Fries rearrangement Bio-inorganic Chemistry Inorganic elements and their biological functions, Enzymes: Carboxy peptidase, Carboxy anhydrase, Liver alcohol Dehydrogenase (LADH), Rubredoxin Proteins: Ferredoxins, Hemoglobin and Myoglobin,		
	<u> </u>	Total	52	

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition with Year of
No.			Publisher with	Publication
			country	
1.	Sesha Maheswaramma K.	Engineering	Pearson, India	1 st Edition, 2017
	and Chugh Mridula	Chemistry		
2.	Dara S.S. and Umare S.S.	A textbook of	S. Chand,	12 th Edition, 2014
		Engineering	India	
		Chemistry		
3.	Ahluwalia V.K. and	Organic	Narosa, India	5 th Edition, 2010
	Parashar R. K.	reactions		
		Mechanisms		
4.	Bertini I., Gray H. B.,	Bioinorganic	University	1 st Edition, 1995
	Lippard S. J. and Valentine	Chemistry	Science	
	J. S.		Books, USA	

Course Code		Course Title								
2UHC104		Engineering Mechanics								
]	Г Н		P TUT		ГИТ	Total		
Teaching Scheme(Hrs.)	03								03	
Credits Assigned			03						03	
		Marks								
Examination	СА		ESE		0	D	Deo	Total		
Scheme	T-1	T-2	IA	ESE	IW	U	r	140	Total	
	20	20	10	50					100	

Course prerequisites:

- Basics of units and conversions
- Basics of Trigonometry
- Newton's Laws of Motion

Course Objectives:

Engineering mechanics is the application of physics to solve problems involving common engineering elements. This course introduces system of forces and its effect on stationary and moving objects. The goal of this course is to expose students to problems in real-world scenarios and respond accordingly.

Course Outcomes:

- CO1. Identify the effect of forces and moment in a given engineering system
- CO2. Determine center of gravity of wires (rods), lamina and solids
- CO3. Analyze applications of equilibrium using free body diagram
- CO4. Apply the concept of kinematics to rectilinear and curvilinear motion of particle.
- CO5. Analyze general plane motion of rigid body using instantaneous center.
- **CO6.** Analyze the dynamic system using D'Alembert, work energy and impulse momentum principle.

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Syste	m of Forces	04	CO1
	1.1	System of coplanar forces: Resultant of concurrent forces, parallel forces, non-concurrent non parallel system of forces, moment of force about a point, couples, Varignon's theorem, Principle of transmissibility of forces		
2	Centr	roid of Wires, Laminas and Solids	04	CO2
	2.1	Centroid of wires/rods Centroid of plane laminas: Plane lamina consisting of primitive geometrical shapes Center of gravity of solids: Solids consisting of primitive solids		
3	Equil	ibrium of Force System, Plane Truss and Friction	13	CO3
	3.1	Equilibrium of system of coplanar forces: Condition of equilibrium for concurrent forces, parallel forces and non-concurrent, non-parallel force system (general force system), Free body diagram.		
	3.2	Types of support, loads, beams, determination of reactions at supports for various types of loads on beams (excluding internal hinge problems)		
	3.3	Plane truss: Analysis of plane truss by using method of joints and method of sections.(excluding frames)		
	3.4	Laws of friction, cone of friction, angle of repose, equilibrium of bodies on inclined plane, application to problems involving wedges and ladders		
4	Kiner	natics of Particles and Rigid Bodies	10	CO4, CO5
	4.1	Variable motion, motion curves (a-t, v-t, s-t) (acceleration curves restricted to linear acceleration only), motion along plane curved path, velocity & acceleration in terms of rectangular components, tangential & normal component of acceleration, relative velocities.		
	4.2	Introduction to general plane motion, problems based on ICR method for general plane motion of bodies (up to 2 linkage mechanism and no relative velocity method)		
5	Kinet	ics of Particle	08	CO6
	5.1	Force and acceleration: Introduction to basic concepts, equations of dynamic equilibrium, Newton's second law of motion (only rectilinear motion)		
	5.2	work energy principle		
	5.3	Impulse and Momentum: Principle of linear impulse and momentum, law of conservation of momentum, impact and collision, direct central and oblique central impact.		
		Total	39	

Recommended Books:

Sr. No.	Name/s of Author/s	Title	Name of Publisher with Country	Edition with Year of Publication
1	Tayal, A.K.	Engineering Mechanics, Statics and Dynamics	Universal Publication, India	14 th Edition 2011
2	Hibbeler, H. C. and Gupta	Engineering Mechanics, Statics and Dynamics	Prentice Hall Private limited, India	11 th Edition 2012
3	Bhattacharyya B.	Engineering Mechanics	Oxford University Press, India	2 nd Edition 2014
4	Ram H.D. and Chauhan A.K.	Foundations and Applications of Engineering Mechanics	Cambridge University Press, UK	1 st Edition 2015
5	Bhavikatti S. S.	Engineering Mechanics	New Age international, India	6 th Edition 2017

Course Code		Course Title							
2UHC105			ŀ	E nginee	ring D	rawi	ng		
]	Γ H		Р		r	ГИТ	Total
Teaching Scheme(Hrs.)	01						02		03
Credits Assigned		(01					02	03
		Marks							
Examination	СА		ESE	TW	0	D	D &O	Tatal	
Scheme	T-1	T-2	IA	ESE	IW	U	r	140	Total
	20 [*]	20 [*]	10	50*					100

* On Screen Examination

Course prerequisites:

- Knowledge of various geometric constructions.
- Basics of trigonometry.

Course Objectives:

Engineering drawing is the language of Engineers. This course aims at building visualization skills required for every engineer. These skills are developed through projections of various solid objects by creating their multi-views. Learner acquires sketching and drafting abilities through manual drawing as well as computer aided tools

Course Outcomes:

At the end of successful completion of the course the student will be able to visualize and draw

CO1. Projections of lines and planes

- **CO2.** Orthographic multi-views of any object along with isometric views
- **CO3.** Various views of regular solid geometrical objects

CO4. Sections and development of solid geometrical objects

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Module	Unit	Details	Hrs.	CO		
No.	No.					
1	Projec	ction of points and lines	9	CO 1		
	1.1					
	1.2	1.2 Projection of points, Projection of lines inclined to both the reference planes.				
	1.3	Projection of planes: Triangular, Square, Rectangular, Pentagonal, Hexagonal and Circular planes inclined to one reference plane and perpendicular to other.				
2	Visua	lization of multi-views of object	14	CO 2		
	2.1	Multi-view orthographic projections of simple machine parts by first angle method as recommended by Indian Standards, Sectional views of simple machine parts (full section).				
	2.2	Introduction to Isometric drawing and Isometric projection, Construction of isometric drawing of machine parts				
3	Projec	ction of solids	06	CO 3		
	3.1	Introduction to projection of solids, Classification of solids and projection of right regular solids (Cube, Prism, Pyramid, Tetrahedron, Cylinder and Cone) inclined to both reference planes (excluding spheres, hollow and composite solids)				
4	Sectio	n and development of solids	10	CO 4		
	4.1	Projection of sectional views for solids (Cube, Prism, Pyramid, Tetrahedron, Cylinder and Cone) cut by plane perpendicular to one and inclined to other reference planes (excluding curved cutting planes)				
	4.2	Development of surfaces: Lateral surface development of Prism, Pyramid, Cylinder and Cone with section plane inclined to one reference plane only (excluding reverse development)				
		TOTAL	39			

Recommended Books:

Sr. No.	Name/s of Author/s	Title	Name of Publisher with Country	Edition with Year of Publication
1.	Bhatt N.D.	Engineering Drawing	Charotar Publishing	53 rd Edition; 2017
		(Plane and solid geometry)	House Pvt. Ltd India	Reprint
2.	Bhatt N.D.	Machine Drawing	Charotar Publishing	20 th Edition 2014
	and		House Pvt. Ltd, India	
	Panchal			
	V.M.			
3.	Gill P. S.	Engineering Graphics	S.K. Kataria & Sons,	11 th Edition; 2013
		and Drafting	India	
4.	Shah P.J.	Engineering Graphics	S. Chand	Revised Edition;
			Publications, India	2008
5.	Parkinson A.	General Engineering	Pitman, UK	6 th Edition Pitman,
	C. (Albert	Drawing		1968
	Charles)			

Course Code	Course Title								
2UHC106				Progra	mmin	g in (С		
]	Г Н		Р		r	ГИТ	Total
Teaching Scheme(Hrs.)	01						02		03
Credits Assigned		(01					02	03
		Marks							
Examination	СА		ESE	TU	0	D	D&O	Tatal	
Scheme	T-1	T-2	IA	ESE	IW	U	r	140	Iotal
	20	20	10	50 [*]					100

* Conducted in laboratory as practical and oral examination

Course prerequisites: Basic knowledge of computer peripheral devices and software concepts

Course Objectives

The course aims at a systematic approach to build logic for problem solving using tools like algorithm and flowchart. Software development process is introduced through mini-projects. The concepts of Structured Programming Approach are introduced with C as Programming language. This first course in programming enables students to develop domain specific software based solutions.

Course Outcomes

- **CO1**. Formulate a problem statement and develop the logic (algorithm/flowchart) for its solution.
- CO2. Apply basic concepts of C programming for problem solving.
- **CO3**. Illustrate the use of derived and structured data types such as arrays, strings, structures and unions.
- **CO4**. Demonstrate the concepts of modular programming through functions and dynamic memory allocation through use of pointers.

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Module	Unit	Details	Hrs.	CO		
No.	No.					
1	Introd	uction to C				
	1.1	Problem solving skill development: Problem definition,				
		fundamentals of algorithms and flowcharts, Algorithms	02	CO1		
		and flowchart development				
	1.2					
		Set, C Tokens, Keywords and Identifiers, Literals,				
		Variables, Data Types and its qualifiers, Declaration and	03	CO2		
		Initialization of Variables, Local and Global Variables,	•••	001		
		Declaring Constants, Formatted Input/output functions				
	1.2	and unformatted input/output functions				
	1.3	Introduction to pointers: Pointer declaration and	01	CO4		
	0					
2	Opera	tors and Expressions				
	2.1	Types of Operators: Introduction, Arithmetic Operators,				
		Relational Operators, Logical Operators, Assignment	02	CO^{2}		
		Operators, Increment and Decrement Operators,	02	02		
		Conditional Operators and Bitwise Operators				
	2.2	Pointer Arithmetic: Pointer addition and subtraction and	01	CO4		
		Evaluating pointer expressions	UI	004		
	2.3	Type Conversions: Implicit and Explicit, Special				
		Operators- Comma Operator, size of Operator,	03	CO2		
		dereferencing operator and Expressions and Evaluation of	00	002		
		Expressions and Operator Precedence and Associativity				
3	Contro	ol Structures				
	3.1	Decision Making and Branching Control Structures: if				
		Statement, Multiple, Statements within if, if – else	02	CO2		
		Statement, Nested if – else, else if Ladder and Decision				
		making using Switch-Case				
	3.2	Looping Control Structures: While Loop, For Loop, Do	05	CO2		
		While Loop and Algorithm and Flowchart for all the loops	0.1	GOA		
	3.3	Jump Statements: Break and Continue, goto Statement	01	CO2		
	3.4	Algorithm and Flowchart:		G Q 1		
		Algorithm and Flowchart for if, if-else, else if ladder,	01	COI		
		switch case, for loop, while loop and do-while loop				
4	Arrays	s, Structures And Unions				
	4.1	Arrays: Introduction to Arrays, One Dimensional Arrays,				
		Multidimensional Arrays, Declaration and Initialization	03	CO3		
		of Arrays, Reading and Displaying arrays				
	4.2	Character Arrays and Strings: Introduction, Declaring				
		and Initializing String Variables, Reading Character and	03	CO3		
		Writing Character, Reading and Writing Strings and				
		String Handling Functions				
	4.3	Structures and Unions: Introduction, Declaring and	02	CO3		
		defining Structure, Structure Initialization, Accessing				

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

		and Displaying Structure Members, Array of Structures, Introduction to Unions and Structure Vs Unions		
	4.4	Dynamic Memory Allocation using Pointers: Dynamic memory allocation using malloc(), calloc() and realloc() and deallocation of memory using free()	02	CO4
5	User D	efined Functions		
	5.1	User Defined Functions: Need, Function Declaration and Definition, Return Values, Function Calls, Passing Arguments to a Function by Value, Recursive functions and Storage classes of Variables	05	CO4
	5.2	Pointers and Functions: Pass by Reference and Returning pointers from functions	01	CO4
	5.3	Command Line Arguments: Using main() function arguments argc, argv	02	CO2
		Total	39	

Recommended Books:

Sr. No.	Name/s of Author/s	Title	Name of Publisher	Edition and Year of Publication
1.	E. Balagurusamy	Programming in ANSI C	McGraw-Hill Education, India	7 th Edition, 2016
2.	Dey P. and Ghosh M.	Structured Programming Approach	Oxford University Press, India	1 st Edition, 2016
3.	Kanetkar Y.	Let Us C	BPB Publications, India	15 th Edition, 2016

Course Code	Course Title								
2UHC107	E	lements	s of Ele	ctrical a	and El	lectro	onics	Engine	ering
]	Γ H		Р		r	ΓUΤ	Total
Teaching Scheme(Hrs.)	03								03
Credits Assigned		(03						03
		Marks							
Examination	СА		FCF	TW	0	р	D&O	Tatal	
Scheme	T-1	T-2	IA	ESE	IW	U	r	140	Iotal
	20	20	10	50					100

Course Prerequisites

Knowledge of Basic Electrical parameters: Resistance, Inductance, Capacitance, Frequency, Voltage, Current and Power and Energy

Course Objectives:

It is difficult to imagine life without electricity and electronics. Electricity plays a major role in the working of all minor and major devices used in our day to day life. In this course students acquire skills that build the domain knowledge right from the fundamentals till the actual design of electrical and electronics appliances. The course also prepares students for follow up courses in circuit and electronics area.

Course Outcomes:

- **CO1.** Analyze resistive networks excited by DC sources using various network theorems
- **CO2.** Demonstrate and analyze response of series parallel combinations of R-L-C circuits excited by single phase AC source.
- **CO3.** Analyze three phase AC star and delta connections for resistive, inductive and capacitive loads.
- **CO4**. Understand principles and working of AC machines and DC machines with their applications.
- **CO5.** Explain rectifier-filter circuits using PN junction diode and working of Bi-polar junction transistor.

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Module	Unit No	Details	Hrs.	CO
1	DC C	ircuits	11	CO1
	1.1 1.2	Concept of dependent / independent sources, ideal / practical sources, source transformation and network terminology. Series, parallel connection and Star-Delta transformations for resistive network.		
	1.3	Mesh and nodal analysis, analysis using principle of superposition theorem.		
	1.4	Super mesh and super Node analysis, Thevenin's and Norton's theorems, maximum power transfer theorem (only independent sources).		
2	Single	Phase AC Circuits	12	CO2
	2.1	Generation of alternating voltage, average value, RMS value, form factor, crest factor, phasor representation in rectangular and polar form.		
	2.2	Steady state behavior of single phase AC circuits with pure R, L, andC, , concept of inductive and capacitive reactance , phasor diagram of impedance, phase relationship in voltage and current.		
	2.3	RL, RC and RLC series/ parallel circuits, concept of impedance and admittance, power triangle, power factor, active, reactive and apparent power, concept of power factor improvement.		
	2.4	Series and parallel resonance: concept of resonance, resonant frequency, bandwidth and Q factor.		
3	Three	Phase AC Circuits	04	CO3
	3.1	Star and Delta connected balanced circuits: Three phase voltages, current and power, delta/star equivalence and analysis for various loading conditions.		
	3.2	Measurement of power using two watt meter method.	0.6	604
4	Electr	rical Machines	06	CO4
	4.1	Single phase transformer construction and principle of working, emf equation of a transformer, different types of transformer, losses in transformer, voltage regulation and efficiency of transformer (no numerical expected)		
	4.2	Construction and working principle of DC motors such as series, shunt and compound, torque-speed characteristics, selection criteria and applications (no derivations and numerical expected)		

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

5	Basic	Electronic Components and applications	06	CO5
	5.1	 P-N Junction diode: Construction and working of PN junction diode, half wave rectifiers with resistive load, full wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. capacitor filter (no derivation and numerical expected) Bipolar Junction Transistor: Construction of PNP and NPN transistor, input- output characteristics of CE configuration and single stage CE amplifier. (no derivation, no numerical expected) 		
	1	TOTAL	39	

Books Recommended:

	Name/s of	Title	Name of Publisher	Edition with
Sr.	Author/s		with country	Year of
No.				Publication
1.	Mittle and Mittle	Basic Electrical	Tata McGraw Hill,	2 nd adition
		Engineering	India	(New) 2001
				, , , , , , , , , , , , , , , , , , ,
2.	Hughes E.	Electrical and Electronic	Pearson Education,	10 th edition,
		Technology	India	2008
3.	Singh Ravish R	Basic of Electrical and	Tata McGraw Hill,	1 St Edition,
		Electronics Engineering	India	2013
4.	Patil B R	Basic of Electrical and	Oxford University	3 rd edition,
		Electronics Engineering	Press, India	2016

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Course Code				Cou	irse Ti	tle			
2UHC108			E	nvironr	nental	Stu	dies		
]	ΓH		P)	r	ΓUΤ	Total
Teaching Scheme(Hrs.)							02		02
Credits Assigned							02		02
				-	Marks				
Examination		CA		I P TUT T 02 02 02 Marks IA ESE TW O P P&O T IA 50	Tatal				
Scheme	T-1	T-2	IA	ESE	I W	U	P	140	Total
	25	25			50				100

Course prerequisites

- Exposure to composition of atmosphere, lithosphere, hydrosphere and its interaction with biotic components.
- Awareness of natural resources.

Course Objective

The objective of this course is to sensitize the students towards environment along with emphasis on engineering applications required for sustainable development. Learner will get acquainted with various environmental assessments and monitoring tools for addressing environmental issues.

Experiential learning through projects will enable them to relate with real world problems. It will also develop an ability to analyze and think critically.

Course Outcomes

- **CO1**.Understand need and concept of sustainability associated with developmental activities.
- **CO2.** Get acquainted with various renewable energy resources and technologies to harness the same.
- CO3. Enumerate various types of pollution and their abatement.
- **CO4**. Recognize the tools and technologies required for environmental assessment and monitoring.

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Module	Unit	Dotaila	Ung	CO
No.	No.	Details	1115.	CO
1	Enviro	onmental Sustainability	2	CO1
	1.1	Strategic planning in sustainable development, Sustainable		
		agriculture		
	1.2	Concept of green building, Green building materials		
	1.3	Climate change mitigation and adaptations – International		
		programs, REDD+		
2	Social	and Environmental Issues	2	CO1
	2.1	Water management practices & case study		
	2.2	Waste management practices & case study		
3	Renew	able Energy Resources	2	CO2
	3.1	Various renewable energy resources		
	3.2	Recent advancements in renewable energy		
4	Enviro	onmental Pollution and Technology	4	CO3
	4.1	Environmental pollution – Sources, effects and control		
		technologies for Air, water, land, e-waste and noise		
		pollution		
	4.2	Tools used in sampling and monitoring (air, water, soil)		
5	Enviro	onmental Assessment and Management	2	CO4
	5.1	Environment Impact Assessment (EIA)		
	5.2	Environmental audit and Eco-labeling, ISO - 14001, 18001		
		and 31001		
6	Enviro	onment and Technology	2	CO4
	6.1	Disaster management plan and use of technology		
	6.2	Remote sensing and GIS – Introduction and its		
		applications in environment sector		
7	Mini P	Project - Choice based group projects will be carried out		CO1,
			12	CO2
			14	СО3,
				CO4
		Total	26	

Recommended Books:

Sr. No.	Name of Author	Title of book	Name of Publication and	Edition and Year of
			country	Publication
1.	Kaushik A and	Perspectives of	New age	6 th edition,
	Kaushik C P	Environmental Studies	international, India	2018
2.	Anjaneyulu Y. and Manickam V.	Environmental Impact Assessment Methodologies.	B.S. Publications, India	2 nd edition, 2011
3.	Asolekar S. and Gopichandran R.	Preventive Environmental Management: An Indian Perspective	CEE Publication, India	Environment and Development Series, 2005
4.	Boyle G.	Renewable Energy: Power for a Sustainable Future	Oxford publication, UK	3 rd edition, 2012
5.	Masters G M. and Ela W. P.	Introduction to Environmental Engineering and Science	Harlow, United Kingdom Pearson	3 rd edition, 2014

Term Work:

- 1. **Mini Project (30 marks):** Project related activities will be conducted and final evaluation will be based on presentation and viva voce on the selected topic
- 2. **Tutorial (20 marks):** Various activities covering entire syllabus will be conducted during tutorial hours

Course Code				Cou	irse Ti	tle			
2UHC109		Communication Skills							
]	Г Н		P	1	r	ГИТ	Total
Teaching Scheme(Hrs.)								02	02
Credits Assigned		Course little Course little Communication Skills TH P TUT 02 02 02 Marks CA ESE TW O P P&O 1 T-2 IA ESE TW O P P&O 50 25 50			02				
					Marks				
Examination		CA		ESE	TW	0	D	D&O	Total
Scheme	T-1	T-2	IA	ESE		U	r	140	1 otai
	25	25			50				100

Course Prerequisites:

The following topics of higher secondary level English are required as prerequisites of this course

- Grammar of English Language
- Reading and Listening Comprehension
- Letter Writing

Course Objectives:

The focus of this course is to improve linguistics and soft skills. The modules on phonology and functional grammar will enhance students' proficiency in English. Students' interpersonal skills and non-verbal communication are developed through role plays and group discussions.

Course Outcomes:

At the end of successful completion of the course the student will be able to

CO1. Use advanced vocabulary and grammar for effective communication.

- CO2. Compose business letters, technical documents and e-communication messages.
- CO3. Articulate sentences correctly by using stress pattern, intonation and voice modulation.
- CO4. Use basic communication and behavioral skills in day to day communication.
- **CO5**. Communicate effectively as an individual and a team-member.

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Gram	mar and Vocabulary	3	CO1
	1.1	Vocabulary building (one word substitution,		
	12	Pairs of confused words		
	1.2	Subject - predicate agreement		
	1.5	Common arrors in the use of articles, modifiers and		
	1.4	prepositions		
2	Mech	anics of Writing	5	CO1 , CO2
	2.1	Use of proper punctuation, phrases and clauses in sentences		
	2.2	Summarizing		
	2.3	Business letter writing		
	2.4	Introduction to technical writing		
		# Self learning topic: ICT enabled communication: E-mail Blog and Website		
3	Intro	duction to Phonetics	4	CO3
	3.1	Basic sounds in English (vowels and consonants)		
	3.2	Syllable, word stress and word accent		
	3.3	Weak forms and strong forms		
	3.4	Intonation		
	3.5	Phonetic transcription		
4	Soft S	Skills	6	CO4
	4.1	Non – verbal communication		
	4.2	Barriers to communication		
	4.3	Assertiveness		
	4.4	Positive thinking		
	4.5	Personality development		
5	Basics	s of Workplace Communication	8	CO5
	5.1	Listening comprehension		
	5.2	Speaking skills		
	5.3	Reading comprehension		
	5.4	Group discussion and public speaking		
		Total	26	

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition with Year of Publication
1.	Raman, M. and Sharma, M.	Communication Skills	Oxford University Press, India	1 st Edition, 2016
2.	Sharma, R. C. and Krishna Mohan	Basic Correspondence and Report Writing: A Practical Approach to Business and Technical Communication	Tata McGraw-Hill Publishing Company Limited, India	5 th Edition, 2017
3.	Seely, J.	The Oxford Guide to Writing and Speaking	Oxford University Press, India	3 rd Edition , 2013
4.	Lesikar, R. V. and Pettit, J. D.	Basic Business Communication	McGraw-Hill International Edition, Singapore	10 th Edition, 2006
5.	Sethi, J. and Dhamija P.V.	A Course in Phonetics and Spoken English	Prentice-Hall of India	2 nd Edition, 2006

Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic.

Term-Work will consist of Tutorials covering entire syllabus. Students will be graded based on continuous assessment of their term work

Course Code				Cou	irse Ti	itle			
2UHW110				Wo	rkshoj)- I			
]	ΓH		P)	,	ГИТ	Total
Teaching Scheme(Hrs.)					02	2			02
Credits Assigned					02				02
					Marks				
Examination		CA		ESE	тМ	0	D	D&O	Total
Scheme	T-1	T-2	IA	LSE	IW	U	r	140	Total
		-			50				50

Course prerequisites: Nil

Course Objectives:

Workshop is an important part of any engineering industry. Engineering students should be conversant with different operations performed on materials for producing desired objects, of various shapes/ sizes, made using several tools and devices. Experiential learning in this course develops skills in different trades of manufacturing.

Course Outcomes:

- CO1. Build an object using Fitting trade as per given specifications.
- CO2. Develop an object using carpentry trade as per given specifications.
- CO3. Understand the use of Lathe machine for shaping objects by removal of metal.
- **CO4**. Comprehend the process of PCB making, layout of house wiring, and electric arc welding.

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Fitting	shop	06	CO1
	1.1	Introduction to Fitting shop, Demonstration of		
		measuring instruments, cutting tools etc. used in Fitting		
		shop.		
	1.2	One simple job involving filing, right angle making, and		
		cutting to size operations.		
2	Carper	ntry shop	04	CO 2
	2.1	Introduction to carpentry shop, Demonstration of		
		measuring instruments, cutting tools used in Carpentry		
		shop and Planning a job using Jack plane.		
	2.2	One simple job consisting of lap joint to be performed in		
		a group consisting of Two students.		
3	Machi	ne shop (Demonstration)	04	CO 3
	3.1	Introduction of all machines available in machine shop.		
		Demonstration of assembling and disassembling tools.		
	3.2	One demonstration job on lathe machine involving		
		turning, facing, grooving, threading etc. operations		
4	Weldir	ng shop	04	CO 4
	4.1	Introduction to Welding shop. Demonstration of		
	4.2	welding tools and equipment, arc welding practice.		
	42	one simple job involving Lap, Bull, Vertical joint to be		
5	Electri	cal Wiring shon	04	CO4
5	5.1	Introduction to Electrical wiring Demonstration of	04	
	011	Electrician tools like Tester pliers screw driver		
		multimeter etc		
	5.2	Hands on experience on House wiring or staircase		
	0.2	wiring or godown wiring. Exposure to connecting solar		
		panel with battery and tube light.		
6	Printee	d Circuit Board (PCB) shop	4	CO4
	6.1	Introduction to PCB shop. Demonstration of tools,		
		material used for PCB making.		
	6.2	Demonstration of PCB making.		
		TOTAL	26	

Recommended Books

Sr.	Name/s of Author/s	Title	Name of	Edition and
No.			Publisher	Year of
			With Country	Publication
1.	Hajra Choudhury S.K.,	Elements of Workshop	Media	16 th Edition,
	Hajra Choudhury A.K.	Technology,	Promoters,	2015
	and Nirjhar Roy	Vol. I & II.	India	
2.	Raghuwanshi B.S.	A Course in Workshop	Dhanpat Rai	10 th Edition,
		Technology,	and Co.	2012
		Vol. I &II.	India	Reprint 2017
3.	Khurmi R.S. and	Text book of Workshop	S. Chand	6 th Edition,
	Gupta J.K.	Technology.	India	2007
				Reprint 2012

Term-Work will consist of workshop practices covering entire syllabus. Students will be graded based on continuous assessment of their term work.

Course Code				Cou	irse T	itle			
2UHC111			Ар	plied M	lather	natic	s - II		
]	ΓH]	P		TUT	Total
Teaching Scheme(Hrs.)		(04		-	-		01*	05
Credits Assigned		04						01	05
	$\begin{tabular}{ c c c c c c c } \hline \hline Applied Mathematics - II \\ \hline TH & P & TUT & To \\ \hline 04 & & 01^* & 0 \\ \hline ed & 04 & & 01 & 0 \\ \hline ed & 04 & & 01 & 0 \\ \hline \hline ed & 04 & & 01 & 0 \\ \hline \hline 1 & 1 & -2 & IA & ESE & TW & O & P & P&O & To \\ \hline \hline 20 & 20 & 10 & 50 & 25 & & & 12 \\ \hline \hline \end{array}$								
Scheme(Hrs.) Credits Assigned Examination Scheme	СА			ESE			D	Deo	Tatal
Scheme	T-1	T-2	IA	ESE	IW	U	P	rau	Total
	20	20	10	50	25				125

*Batch wise Tutorials.

Course prerequisites

- Methods of integration
- Methods of differentiation
- Basics of differential equations
- Tracing of standard curves

Course Objectives

The objective of this course is to model a real life scenario into differential equations and solve them. The course will enable students to learn different methods of solving improper and multiple integral. It will also focus on expansion of a real function as Taylor's series and finding successive derivatives of functions.

Course Outcomes

- CO1. Apply concept of Beta & Gamma functions and DUIS to solve improper integrals.
- CO2. Find length of a curve using cartesian, polar and parametric equations of curves.
- CO3. Evaluate multiple integrals and use it to find area, volume and mass of lamina.
- **CO4**. Identify and solve different types of ordinary differential equations using various methods.
- **CO5**. Solve problems involving successive derivatives of real variable functions. Expand a function as an infinite series using Taylor's and Maclaurin's series and use it to solve problems involving indeterminate forms.

Module	Unit	Details	Hrs	CO
No.	No.		1115.	CO
1	Integra	ation : Review And Some New Techniques	8	CO1
	1.1	Beta and Gamma functions with properties		
	1.2	Differentiation under integral sign with constant limits of		
		integration (without proof)		
		#Self-learning topic: Differentiation under integral sign		
-		with variable limits of integration	-	CO3
2	Rectifi	Cation	5	CO2
	2.1	Rectification of plane curves in cartesian form		
	2.2	Problems of rectification in parametric and polar forms		
3	Double	e Integration and Applications	9	CO3
	3.1	Double integration - Introduction, Evaluation of double		
		integrals with given limits and over the given region		
	3.2	Change of order of integration, Evaluation of double		
		integrals by changing order of integration		
	3.3	Evaluation of double integrals by changing to polar form,		
		Examples on change of variables by using Jacobians		
	3.4	Application of double integrals to compute area and mass		
	T • 1	of lamina		COA
4	Triple	Integration and Applications	1	CO3
	4.1	in contaction forms		
	4.2	In cartesian form		
	4.2	subarical polar apardinates		
	13	Application of triple integral to compute volume		
5	4.5 Difford	Application of triple integrat to compute volume	0	CO4
5	5 1	Differential equation of first order and first degree - Exact)	04
	5.1	differential equations Equations reducible to exact		
		equations using integrating factor (Four rules)		
	5.2	Linear differential equations (review) Equation reducible		
	0	to linear form		
	5.3	Bernoulli's equation, Equation reducible to Bernoulli's		
		equation		
6	Higher	r Order Differential Equation	7	CO4
	6.1	Linear differential equation with constant coefficients -		
		Complimentary function and particular integral of		
		differential equation of the type $f(D)y=X$, where X is e^{ax} ,		
		$\sin(ax+b)$, $\cos(ax+b)$, x^n , $e^{ax}V$, xV		
	6.2	Cauchy's homogeneous linear differential equation and		
		Legendre's differential equation		
	6.3	Method of variation of parameters		
7	Succes	sive Differentiation, Expansion of Functions,	7	COS
	Indete	rminate Forms	/	005

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

	7.1	Successive differentiation - n th derivative of standard functions. Leibnitz's theorem (without proof) and problems		
,	7.2	Taylor's theorem (only statement), Taylor's series and		
		Maclaurin's series (only Statement). Expansion of e^x ,		
		sinx, cosx, tanx, sinhx, coshx, tanhx, log (1 + x), Binomial series, Series expansion using differentiation and integration		
		#Self-learning topic : Indeterminate forms, L-Hospital		
		rule, Problems involving series		
		TOTAL	52	

Recommended Books

Sr. No	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Grewal B. S.	Higher Engineering	Khanna	43 rd Edition,
		Mathematics	Publications,	2014
			India	
2.	Kreyszig E.	Advanced Engineering	Wiley Eastern	10 th Edition,
		Mathematics	Limited, India	2015
3.	Wartikar P. N. and	A text book of Applied	Pune Vidyarthi	6 th Edition,
	Wartikar J. N.	Mathematics Vol. I & II	Gruha, India	2012
4.	Ramana B.V.	Higher Engineering	Tata Megraw Hill	12 th Reprint,
		Mathematics	New Delhi, India	2012

Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA.

Term-Work will consist of Tutorials covering entire syllabus. Students will be graded based on continuous assessment of their term work.

Course Code		Course Title								
2UHC112		Industrial Applications								
		TH P TUT Total								
Teaching Scheme(Hrs.)								02	02	
Credits Assigned								02	02	
					Marks					
Examination		CA		ESE	TW	0	р	D.S.O	Tatal	
Scheme	T-1 T-2 IA			ESE	IW		r	rau	Total	
					50				50	

Course prerequisites:

Nil

Course Objectives:

The course introduces a new entrant to evolution, breadth of applications of chosen branch as well as job and research opportunities. Interaction with experts from Industry and Academia through series of lectures and industrial visits helps to create interest in specific domain. This will enable the learner to understand the reach of technology to real-world scenarios.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1. Recognize different program specific thrust areas and industrial applications
- **CO2.** Understand evolution and developments in the related areas

Module No.	Details	Hrs.	CO
1	Industrial Experts Lectures	10	COL
2	Internal Faculty / Academician-(Thrust Area)	4	
3	Industrial Visit	4	
4	Video Lecture	2	02
5	Students Presentation	6	
	TOTAL	26	

Term Work-

- 1. Presentation (Evaluation along with Communication Skills Faculty)
- 2. Quiz
- 3. Report Writing
- 4. Attendance

Course Code	Course Title									
2UHW113		Workshop - II								
		TH P TUT Total								
Teaching Scheme(Hrs.)					02	2			02	
Credits Assigned					02			02		
				Marks						
Examination		CA		ESE			D	D&O	Total	
Scheme	T-1 T-2 IA			ESE	1 VV	U	r	140	Total	
					50				50	

Course prerequisites:

Nil

Course Objectives:

Workshop is an important part of any engineering industry. Engineering students should be conversant with different operations performed on materials for producing desired objects, of various shapes/ sizes, made using several tools and devices. Experiential learning in this course develops skills in different trades of manufacturing.

Course Outcomes:

At the end of successful completion of the course the student will be able to

CO1. Build an object/product using Fitting trade as per given specifications.

CO2. Develop an object/product using carpentry trade as per given specifications.

CO3. Create an object/product using Welding trade as per given specifications.

CO4. Prepare an object/product using PCB trade as per given specifications.

Based on the skills acquired by students in semester I, they will choose any **Two** trades from Fitting, Carpentry, welding and PCB. With the help of these skills they will make product or job in respective trade. Following is the list of some sample products which can be selected but not limited. Apart from products listed below students can choose any product. A team of students consisting of 4 to 5 members from same batch will have to select two trades from Fitting, carpentry, welding and PCB,. Each team will get 12 hours to complete one trade. Assessment will be

- 1. Continuous assessment
- 2. Quality of finished product

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Fittin	g shop	12	CO 1
	1.1	Proposed products for Fitting shop:		
		1. Machine clamp assembly		
		2. C shape clamp		
		3. Fitting shop jobs involving various shapes and		
		operations		
		4. Any other product involving fitting operations		
2	Carpe	entry shop	12	CO 2
	2.1	Proposed products for carpentry shop:		
		1. Office Tray		
		2. Switch board		
		3. Wooden stool		
		4. Mail box		
		5. Chalk box and duster		
		6. Picture frame		
		7. Chair cum ladder		
		8. Any other product involving carpentry operations		
3	Weldi	ng shop	14	CO 3
	3.1	Proposed products for Welding shop:		
		1. Magazine rack		
		2. Metal stool		
		3. Welding table		
		4. Cloth dryer stand		
		5. Ladder		
		6. Shoe rack		
		7. Flower pot stand		
		8. Any other product involving Welding operations		
4	Printe	ed Circuit Board (PCB)	12	CO 4
	4.1	Proposed products for PCB shop:		
		I. Digital Clock		
		2. Electric Lamp.		
		3. 3Digit thermometer		
		4. 12V Power Supply		
		5. Portable Speaker.		
		6. Transistor Polarity Tester		
		7. Automatic Street Light.		
		8. LED Headlights		
		тоты	2(
		IOIAL	20	

In this project, work expected from student is

- 1. Prepare product drawing
- 2. Calculate material required
- 3. Calculate selling price of product considering raw material cost, labour cost, profit etc.
- 4. Process plan with manpower and approximate time required.
- 5. Complete the product in given time period

Term work assessment is based on the overall performance of the student with every Job/product graded from time to time.

Recommended Books

Sr.	Name/s of Author/s	Title	Name of	Edition and
No.			Publisher	Year of
			With Country	Publication
1.	Hajra Choudhury S.K.,	Elements of Workshop	Media	16 th Edition,
	Hajra Choudhury A.K.	Technology,	Promoters,	2015
	and Nirjhar Roy	Vol. I & II.	India	
2.	Raghuwanshi B.S.	A Course in Workshop	Dhanpat Rai	10 th Edition,
		Technology,	and Co.	2012
		Vol. I &II.	India	Reprint 2017
3.	Khurmi R.S. and	Text book of Workshop	S. Chand	6 th Edition,
	Gupta J.K.	Technology.	India	2007
				Reprint 2012

Course Code		Course Title									
2UHL102		Engineering Physics Laboratory									
]	ГИТ	Total							
Teaching Scheme(Hrs.)					02	2			02		
Credits Assigned					01	l			01		
					Marks						
Examination		CA		ESE	TW	^ *	D	D60	Tatal		
Scheme	T-1 T-2 IA			ESE	IW	U	r		Total		
					25	25			50		

* Oral based on Laboratory Experiments

Term-Work will consist of experiments covering entire syllabus of Engineering Physics (2UHC102).

Students will be graded based on continuous assessment of their term work.

Course Code	Course Title									
2UHL103		Engineering Chemistry Laboratory								
]	Γ H		P		TUT		Total	
Teaching Scheme(Hrs.)					02	2			02	
Credits Assigned					01	L			01	
				Marks						
Examination		CA		FSF	TW	^ *	D	D&O	Total	
Scheme	T-1	T-2	IA	LSL	IW	U	r	1 & U	Total	
					25	25			50	

* Oral based on Laboratory Experiments

Term-Work will consist of experiments covering entire syllabus of Engineering Chemistry(2UHC103).

Students will be graded based on continuous assessment of their term work.

Course Code		Course Title									
2UHL104		Engineering Mechanics Laboratory									
]	Γ H		P		r	ΓUΤ	Total		
Teaching Scheme(Hrs.)					02	2			02		
Credits Assigned					01	L			01		
					Marks						
Examination		CA		ESE	TW	^ *	D	D&O	Total		
Scheme	T-1 T-2 IA			LSL	I W	U	r	rau	Iotai		
					25	25			50		

* Oral based on Laboratory Experiments

Term-Work will consist of experiments covering entire syllabus of Engineering Mechanics (2UHC104).

Students will be graded based on continuous assessment of their term work.

Course Code		Course Title								
2UHL105		Engineering Drawing Laboratory								
		TH P TUT								
Teaching Scheme(Hrs.)					02	2			02	
Credits Assigned					01				01	
					Marks					
Examination		CA		ESE	TW	^ *	D	D&O	Total	
Scheme	T-1 T-2 IA			LSE	1 VV			140	Total	
					50 [@]				50	

(a) 25 marks each for Practical and Tutorial

Term-Work will consist of tutorials and practicals covering entire syllabus of Engineering Drawing (2UHC105).

Students will be graded based on continuous assessment of their term work.

Course Code	Course Title									
2UHL106		Programming in C Laboratory								
		TH P TUT								
Teaching Scheme(Hrs.)					02	2			02	
Credits Assigned					01	L			01	
					Marks					
Examination		CA		FSF	TW	^ *	D	D&O	Tatal	
Scheme	T-1 T-2 IA			LSE	1 VV	U	r	140	Total	
					50				50	

Term work will consist of tutorials and practicals covering entire syllabus of Programming in C(2UHC107).

Students will be graded based on continuous assessment of their term work.

Course Code		Course Title											
2UHL107]	Elements of Electrical & Electronics Engineering Laboratory											
		TH P TUT Total											
Teaching Scheme(Hrs.)					02	2			02				
Credits Assigned					0	1			01				
					Marks								
Examination		CA		ESE	тм	0 *	D	P&O	Total				
Scheme	T-1	T-1 T-2 IA			IW	U	r	140	Iotal				
					25	25			50				

* Oral based on Laboratory experiments /activities

Term-Work will consist of experiments / activities based on syllabus of Elements of Electrical & Electronics Engineering (2UHC107).

Students will be graded based on continuous assessment of their term work.

Graduate Attributes of an Engineering Graduates:

(Defined by National Board of Accreditation)

- 1. **Engineering Knowledge**: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem Analysis**: Identify, formulate, research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- 3. **Design/ Development of Solutions**: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
- 4. **Conduct** investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
- 5. **Modern Tool Usage**: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. **The Engineer and Society**: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- 7. Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- 9. Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
- 11. **Project Management and Finance**: Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change.

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Note: It is notified to all concerned that Revision 1.0 of FYBTech – KJSCE 2018 syllabus is further amended to Revision 2.1 with the due permissions from academic board. The course codes prefix modified to 2 from 1 in earlier version of 1.0 and no change in the contents of any course.

13th November 2018

Principal